Generating quality word sense disambiguation test sets based on MeSH indexing

نویسندگان

  • Jung-Wei Fan
  • Carol Friedman
چکیده

Word sense disambiguation (WSD) determines the correct meaning of a word that has more than one meaning, and is a critical step in biomedical natural language processing, as interpretation of information in text can be correct only if the meanings of their component terms are correctly identified first. Quality evaluation sets are important to WSD because they can be used as representative samples for developing automatic programs and as referees for comparing different WSD programs. To help create quality test sets for WSD, we developed a MeSH-based automatic sense-tagging method that preferentially annotates terms being topical of the text. Preliminary results were promising and revealed important issues to be addressed in biomedical WSD research. We also suggest that, by cross-validating with 2 or 3 annotators, the method should be able to efficiently generate quality WSD test sets. Online supplement is available at: http://www.dbmi.columbia.edu/~juf7002/AMIA09.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sense-Based Biomedical Indexing and Retrieval

This paper tackles the problem of term ambiguity, especially for biomedical literature. We propose and evaluate two methods of Word Sense Disambiguation (WSD) for biomedical terms and integrate them to a sense-based document indexing and retrieval framework. Ambiguous biomedical terms in documents and queries are disambiguated using the Medical Subject Headings (MeSH) thesaurus and semantically...

متن کامل

Improving Statistical Machine Translation Using Word Sense Disambiguation

We show for the first time that incorporating the predictions of a word sense disambiguation system within a typical phrase-based statistical machine translation (SMT) model consistently improves translation quality across all three different IWSLT ChineseEnglish test sets, as well as producing statistically significant improvements on the larger NIST Chinese-English MT task— and moreover never...

متن کامل

Comparing a rule-based versus statistical system for automatic categorization of MEDLINE documents according to biomedical specialty

Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Tw...

متن کامل

Distributional Semantics Approach to Thai Word Sense Disambiguation

Word sense disambiguation is one of the most important open problems in natural language processing applications such as information retrieval and machine translation. Many approach strategies can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledgebased, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy...

متن کامل

DKPro WSD: A Generalized UIMA-based Framework for Word Sense Disambiguation

Implementations of word sense disambiguation (WSD) algorithms tend to be tied to a particular test corpus format and sense inventory. This makes it difficult to test their performance on new data sets, or to compare them against past algorithms implemented for different data sets. In this paper we present DKPro WSD, a freely licensed, general-purpose framework for WSD which is both modular and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AMIA ... Annual Symposium proceedings. AMIA Symposium

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009